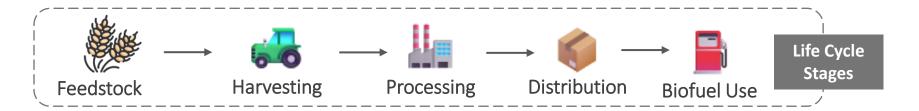


Collaborative actions to bring novel **BIO**fuels **THE**rmochemical **RO**utes into industrial **S**cale

Workshop on 'Alternative and Renewable Fuels'


"Innovative Tools for Sustainable Decision-Making in Biofuels"

Angeliki Sagani, CERTH

Motor Oil (Hellas) Corinth Refineries S.A | 23rd October 2025

Why Sustainability Assessment for Biofuels?

Sustainability Assessment: Ensuring Real Impact

- Measures environmental, economic and social performance
- Confirms biofuels delivers true sustainability gains
- Required for policy compliance and market credibility

The Real-World Challenge: Complex Trade-offs

- Low carbon does not always mean low impact
- Cost, emissions and social factors often conflict
- Industrial decisions often need a structured comparison framework

The Solution: Integrating MCDCA

- MCDA helps balance competing sustainability criteria
- Translates assessments into clear, evidence-based rankings
- Supports transparent, participatory decision-making

Sustainability Assessment tells us how sustainable are biofuels from a life cycle perspective – MCDA helps us decide which pathways are truly worth pursuing

Life Cycle Sustainability Assessment (LCSA)

Complete Framework:

A holistic approach integrating environmental, economic, and social impacts across the full life cycle

1. Goal & Scope Definition

- Define system boundaries & functional unit
- Align with ISO 14040/14044 standards
- Establish assessment objectives
- Identify key stakeholders

2. Life Cycle Inventory

- Compile inventory data across life cycle stages
- Map material and energy flows
- Document emissions, waste and by-products
- Ensure data quality and completeness

3. Life Cycle Assessment

- Evaluate environmental impacts (e.g., GHG emissions, fossil energy use)
- Analyze resource consumption
- Identify environmental hotspots

4. Life Cycle Costing

- Evaluate economic performance
- Analyze CAPEX & OPEX
- Identify cost drivers across life cycle
- Assess risks and opportunities

5. Social Life Cycle Assessment

- Measure social performance indicators
- Analyze health and safety aspects
- Evaluate social impacts on stakeholders

6. Interpretation

- Identify trade-offs & synergies
- Create sustainability dashboard
- Develop actionable recommendations

Multi-Criteria Decision Analysis & Innovation

What is MCDA

Foundation on structure decisions

Multi-Criteria Decision Analysis (MCDA) is a structured framework for evaluating and comparing alternatives across multiple, often conflicting criteria, balancing environmental, economic & social impacts. *Key capabilities: Trade off analysis; Transparent weighting; Stakeholder engagement, Risk assessment*

What is Innovation in MCDA

Advanced decision tools

Involves the use of advanced methods, tools, and technologies to enhance decision-making, improving accuracy, transparency, inclusiveness, and sustainability, and enabling smarter, datadriven, and more adaptive solutions.

Why is innovation essential

Addressing critical gaps in traditional approaches

Traditional Limitations

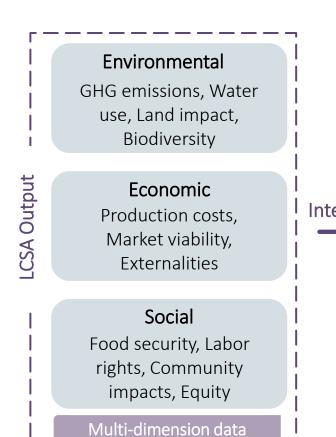
- Single factor focus
 Cost prioritized, neglecting social or environmental impacts
- Short-term thinking
 Immediate gains prioritized over long-term sustainability

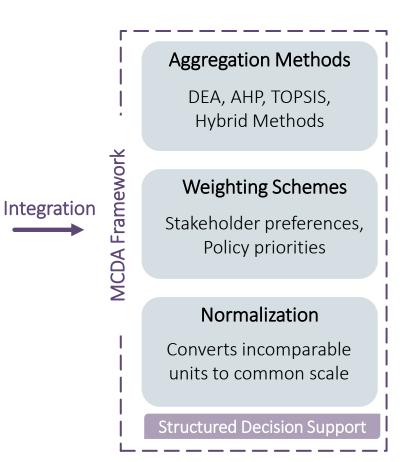
Data-driven Adaption

- Emerging data sources
 IoT sensors, real-time monitoring requires digital tools
- Complex datasets
 Multi-dimensional information

Enhanced Strategic Value

- AI/ML integration
 Machine learning enhanced prediction accuracy
- Sustainability metrics
 Comprehensive KPIs drive long-term strategic value

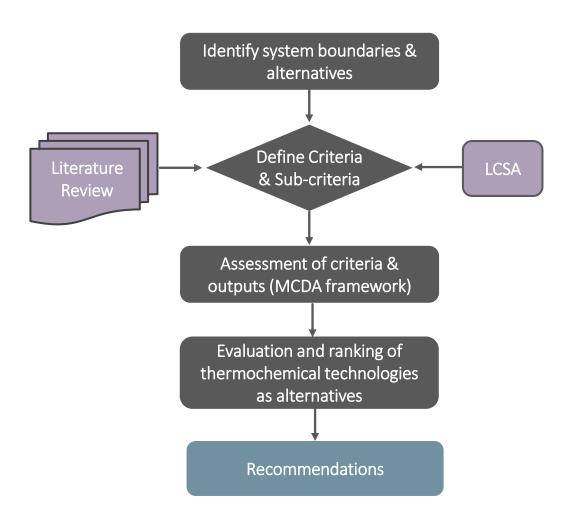



Integrating LCSA with MCDA for Biofuels

The Decision-Making Challenge

LCSA generates multi-dimensional sustainability data (environmental, economic, social), but policymakers and stakeholders need clear guidance: Which biofuel pathway is best? How do we trade off conflicting objectives?

DEA


Identifies efficient biofuel pathways on the sustainability frontier.

Efficiency frontier

6-Step LCSA-MCDA Integration Framework

The selection of the most optimal Goal & Scope thermochemical technology Execute Environmental LCA, LCC **Conduct LCSA** & Social LCA Transform LCSA outputs into **Define Criteria** environmental, economic & social criteria Engage stakeholders using Stakeholder weighting relevant weights Run MCDA method **Apply MCDA** to generate rankings Test robustness by varying **Sensitivity Analysis** weights and assumptions

How MCDA Enhances Life Cycle Sustainability

Why LCSA-MCDA Integration is Essential for Biofuels?

1. Handles Trade-offs Explicitly

MCDA provides transparent methods to balance competing criteria (e.g., low GHG emissions vs. high production costs). Stakeholders can see how different weightings affect outcomes.

3. Enables Scenario Analysis

Test sensitivity to changing conditions (e.g., carbon pricing, feedstock availability, technology improvements). Identify robust biofuel pathways under uncertainty.

2. Incorporates Stakeholder Preferences

Different stakeholders prioritize differently. MCDA allows policymakers, industry, and communities to weight criteria according to values, **enabling participatory decision-making**.

4. Supports Policy Decisions

Provides ranking or classification of biofuel alternatives based on comprehensive sustainability performance, guiding R&D priorities, subsidy allocation, and regulatory standards.

Emerging Role of AI and ML in Biofuels Sustainability

Transforming Biofuel LCA Through Intelligence

Artificial Intelligence (AI) & Machine Learning (ML) boost efficiency and reliability across the biofuel life cycle - from feedstock to use phase - revolutionizing LCSA through industrial digitalization.

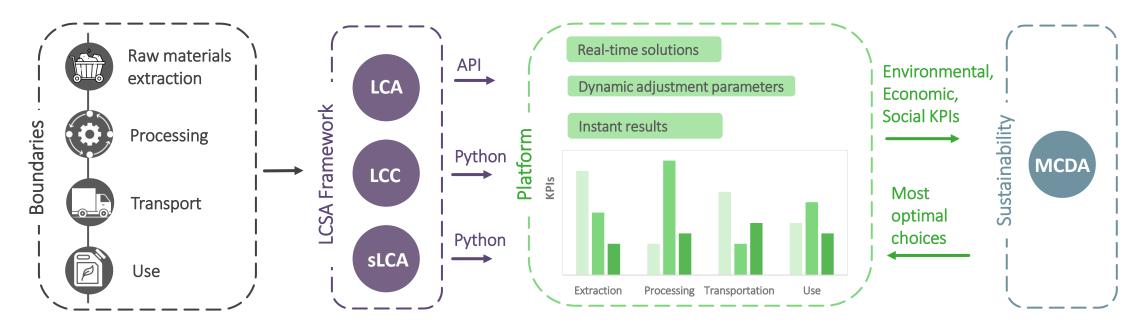
ML Applications Across Biofuel Life Cycle Stages

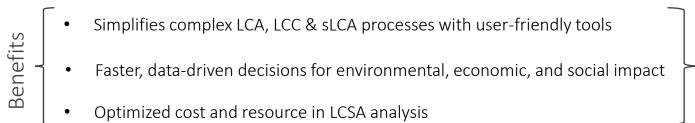
ML applications span from initial feedstock assessment through production optimization to final consumption analysis, enabling data-driven decision-making at every stage of the biofuel value chain.

1 Soil & Feedstock	Yield prediction; Crop selection; Resource assessment
2 Biofuel Production	Process optimization; Efficiency enhancement; Quality control
3 Biofuel Use	Real-time monitoring; Impact prediction; Technology performance

ML in LCSA Assessment

- Predictive Modelling
- Uncertainty reduction
- Scenario forecasting
- Pattern recognition




^{**} Most utilized ML model: Artificial Neural Network (ANN)

Our Sustainability Tools

Real-Time Simulations Platform

Enables Life Cycle Assessment, Life Cycle Costing, Social Life Cyle Assessment, and Multi-Criteria Decision Analysis in real-time

Intelligent LCA, LCC & MCDA Dashboards

Intelligent decision-making tool that empowers industries to assess sustainability, optimize costs, and choose the most eco-efficient production pathways.

LCA Dashboard

API integration with commercial LCA tools for high-quality environmental assessments

Assess Environmental Impact

Evaluate environmental KPIs (e.g., GHG emissions, fossil energy use

Customize Input Parameters

e.g., Modify energy mix composition (renewable vs. non-renewable)

Visual Analysis

Interactive graphs for optimization insights

LCC Dashboard

The dashboard communicates with custom LCC tools, enabling reliable cost evaluations

Assess Economic Viability

Analyze CAPEX, operational costs and biofuel production costs

Customize Input Parameters

Adjust equipment costs, OPEX and discount rate for tailored assessments

Visual Analysis

Interactive graphs for clear insights into economic viability

MCDA Dashboard

The dashboard integrates with MCDM tools, providing robust sustainability assessments

Evaluate Multiple Criteria

Assess environmental, economic, and social factors to select the best pathway

Customize Input Parameters

Adjust the importance of each criterion and sub-criterion for tailored LCSA

Visual Analysis

View interactive graphs with rankings and scores for easy comparison

Analyze LCA and LCC results side-by-side to assess environmental and economic trade-offs

Strategic Impact & Business Value

How Can Industries Use the Results?

TEC Innovation

Customize and assess LCA, LCC, sLCA, and MCDA models for improved sustainability and efficiency.

Operational Improvements

Streamline supply chains using real-time data to minimize resource use and environmental impact

Unlocking Strategic Value & Sustainable Growth

Scalable Across Industries:

Adaptable tools for manufacturing, energy, and infrastructure sectors.

• Business Impact:

Achieve real-time sustainability tracking, cost savings, and stronger compliance.

Future-Ready Innovation:

Simplified tools drive data-based decisions and sustainable growth.

Thank you!

Angeliki Sagani, CERTH Research Engineer sagani@certh.gr

Dr. Dimitrios Kourkoumpas, CERTH Senior Research Engineer kourkoumpas@certh.gr

