

Collaborative actions to bring novel **BIO**fuels **THE**rmochemical **RO**utes into industrial **S**cale

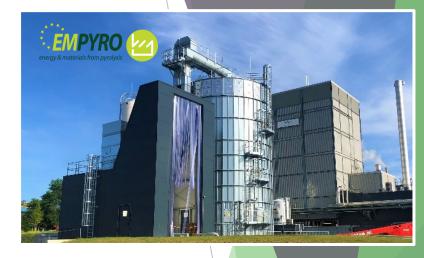
Advanced biofuels from fast pyrolysis bio-oil

Patrick Reumerman, BTG Biomass Technology Group BV Workshop 'Alternative and Renewable Fuels' Motor Oil, Corinth Refineries 23 October, 2025

Fast Pyrolysis Value Chain

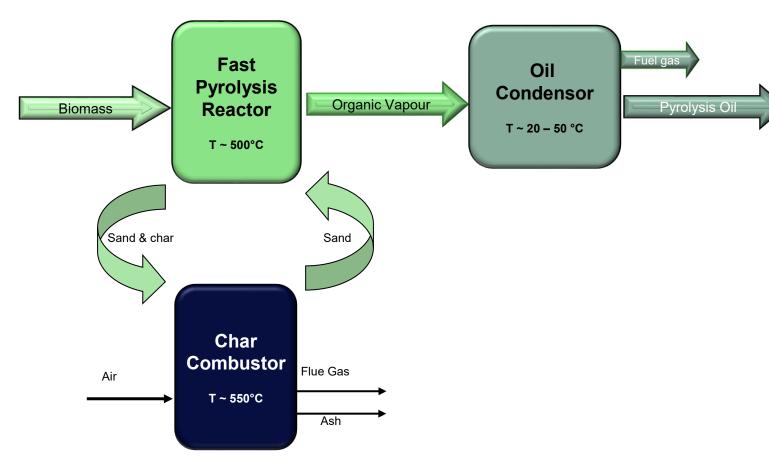
Objectives

Demonstration the value chain from biomass via fast pyrolysis to advanced biofuels:

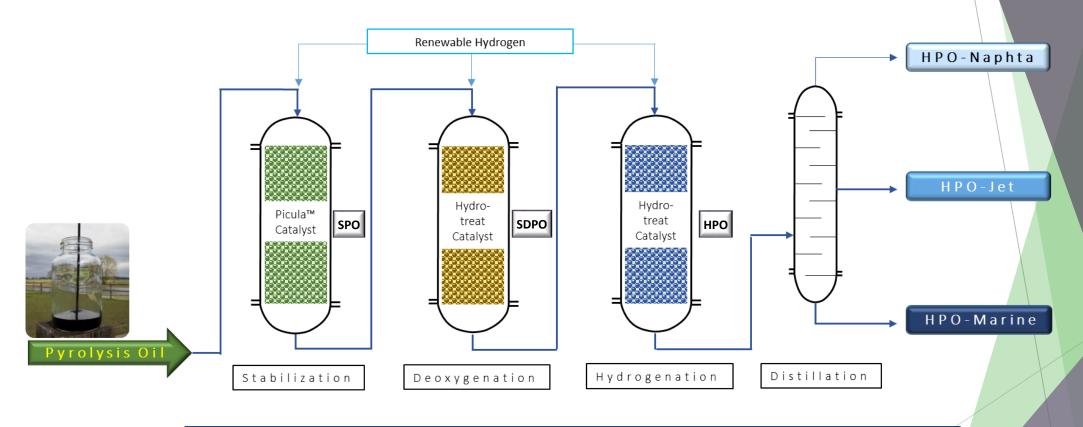

- Demonstrate this value chain for two different biomasses:
 - 1. Forestry Residues
 - 2. Barley Straw
- Final fuel products include drop-in, Sustainable Aviation Fuel (SAF) and Renewable Marine fuel.

Fast Pyrolysis - Biomass to FPBO

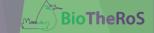
FPBO = Fast Pyrolysis Bio-Oil


- Thermal cracking of organic material in absence of oxygen
- Main product: liquid bio-oil (FPBO)
- ♦ Other products: gas and char
- Minerals recovered at low temperature
- Fast heating required to maximize liquid yield
- Typical Process conditions
 - \circ T = 400 600 °C
 - o P = atmospheric
 - \circ $\tau_{gas} \sim seconds$
- Liquid Composition': carboxylic acids, ketones, aldehydes, alcohols, carbohydrates, depolymerized lignin, extractives, water,...

Fast Pyrolysis: biomass to FPBO


Simplified representation of BTG's pyrolysis process

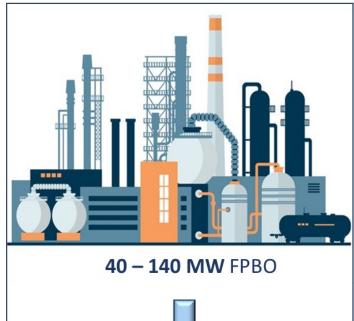
Water content	25	wt%	
Density	1,170	kg/m³	
LHV	16	MJ/kg	
Acid Number	70	mg _{KOH} /g	
Sulfur	< 0.05	wt%	
FlashPoint	?	°C	
Cetane Number	< 20		
MCRT	> 15	wt%	


FPBO to advanced biofuels

SPO = Stabilized Pyrolysis

SDPO = Stabilized Deoxygenated Pyrolysis Oil

HPO = Hydrotreated Pyrolysis Oil


FPBO to advanced biofuels

Decentralized Fast Pyrolysis

Centralized Upgrading

30 - 130 MW HPO

Decentralized Fast Pyrolysis

10 – 45 MW HPO-Marine

Experimental facilities

Bench-scale pyrolysis


- 2-4 kg/h
- Day operation typical 2 -4 h runs

Bench- & pilot scale fast pyrolysis test facilities

Bench- & pilot scale hydrotreating facilities

- 0.5 1.5 kg feed/day
- 24/7 operation
- Cumulative > 20,000 h

PDU

- 20 50 kg feed/day
- 24/5 operation
- Cumulative > ~4,000 h

- 100 200 kg/h
- Day operation typical 4 -10 h runs

НРО	Softwood reference	Forestry Residue	Barley Straw	
			900 900 900 900 900 900 900 900 900 900	
Density (@ 15°C)	0.843	0.853	0.855	kg/L
Acidity	<0.01		0.004	mg KOH/g
Viscosity (20 °C)	2.1	3.3	3.3	cSt
Initial Boiling Point (IBP)	116		125	°C
Final Boiling Point (FPB)	418		431	°C
Carbon	86.5	87.4	87.3	wt.%
Hydrogen	13.8	12.8	13.1	wt.%
Nitrogen	<10		48	mg/kg
LHV, calculated	44.6	43.9	44.1	MJ/kg
LHV, measured	42.8		42.4	MJ/kg

Distillation

Typical ranges:

HPO - Naphtha: < 150 °C</p>

o HPO - Jet: 150 − 275 °C

HPO - Marine > 275 °C


HPO-JET

Parameter	Unit	ASTM Specifications			HPO - JET		
		D1655	D7566	D4054	Wood Ref	Barley Straw	Forestry Residue
Density (T = 15 °C)	kg/L	775 - 840		730 - 800	834.1	837.3	835.8
Viscosity (+20 °C)	cSt				2.01	2.00	2.03
Viscosity (-20 °C)	cSt	< 8 < 12 (a		(at -40°C)	5.074	5.217	
Acidity	mg KOH/g	< 0.10		< 0.015	0.006		
Flashpoint	°C	> 38		38 - 66	49	45	44
Freeze Point	°C	< -40 / -47		< -40	-89.1	-62.0	
Net Heat of combustion	MJ/kg	> 42.8		-	43.2	42.7	
Sulfur content	mg/kg	< 3,000		< 15	2.4	1.9	
Nitrogen content	mg/kg			<2	< 0.5	24.9	
Hydrogen	wt%				13.6	13.1	13.2
DCN/ICN	-			35 - 60	38.3	34.7	
IBP (ASTM D86)	°C			130 – 190	161.0	155.1	
10% recovered	°C	< 205		150 - 200	175.9	173.9	
FPB (ASTM D86)	°C	< 300		195 - 296	264.6	272.4	
Aromatics	v%	< 25	8 - 25	< 20	11.165	19.624	
Mono-aromatics	v%				11.165	19.624	
Diaromatics	v%				<0.001	<0.001	

Summary

- Barley straw and Forestry residues have been successfully pyrolyzed and upgraded to advanced biofuels using "standard processing conditions".
- Initial analysis shows that fuel properties are within or close to specifications.
- Lydrotreatment severity should be slightly increased for both feedstocks to achieve similar high-quality products as with softwood.

Thank you!

Patrick Reumerman

BTG Biomass Technology Group B.V. reumerman@btgworld.com

12