

Collaborative actions to bring novel **BIO**fuels **THE**rmochemical **RO**utes into industrial **S**cale

Alternative and Renewable Fuels

Logistics for biomass valorisation to aviation and maritime sector

ABOUT CIRCE

CIRCE in numbers

23

OF WHICH COORDINATED

CIRCE is a Technological Center specialized in **energy** and **sustainability**

RESEARCH (2)

12,3 M€

EXECUTED COMPETITIVE
PUBLIC INCOME

79

PROJECTS AWARDED IN
HORIZON EUROPE

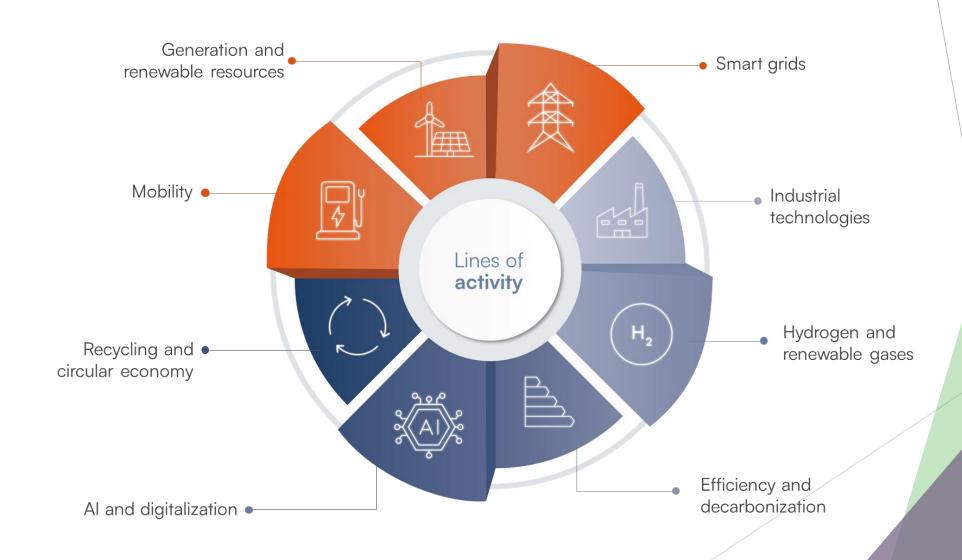
TRANSFER AND SERVICES

9 M€ EXECUTED PRIVATE INCOME

+300 PRIVATE CONTRACTS

+85%
BILLED COMES FROM
SATISFIED CLIENTS WHO
REPEAT WITH CIRCE

+300 PEOPLE


37,5 AVERAGE AGE

36 PhD

36% WOMEN

> 17 NATIONALITIES

Line of activities

CIRCE'S ROLE IN BIOTHEROS

CIRCE's role in Biotheros

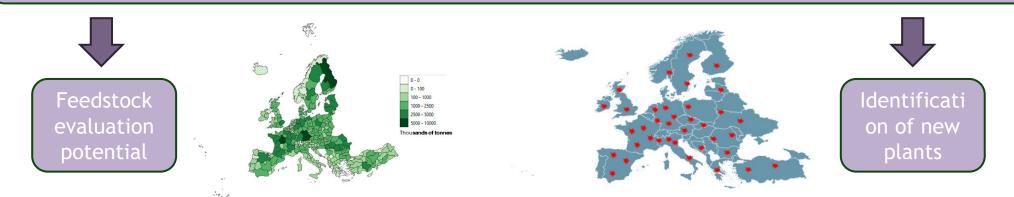
New value chains for biomass valorisation to aviation and maritime biofuels

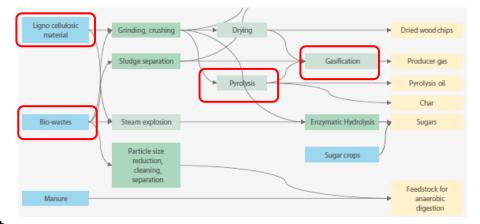
Feedstock potential at NUTS2 level (tonnes)

Pre-treatment and cost associated of each feedstock (€/t)

Feedstock mobilisation, cost of each feedstock, harvesting + logistic (€/t)

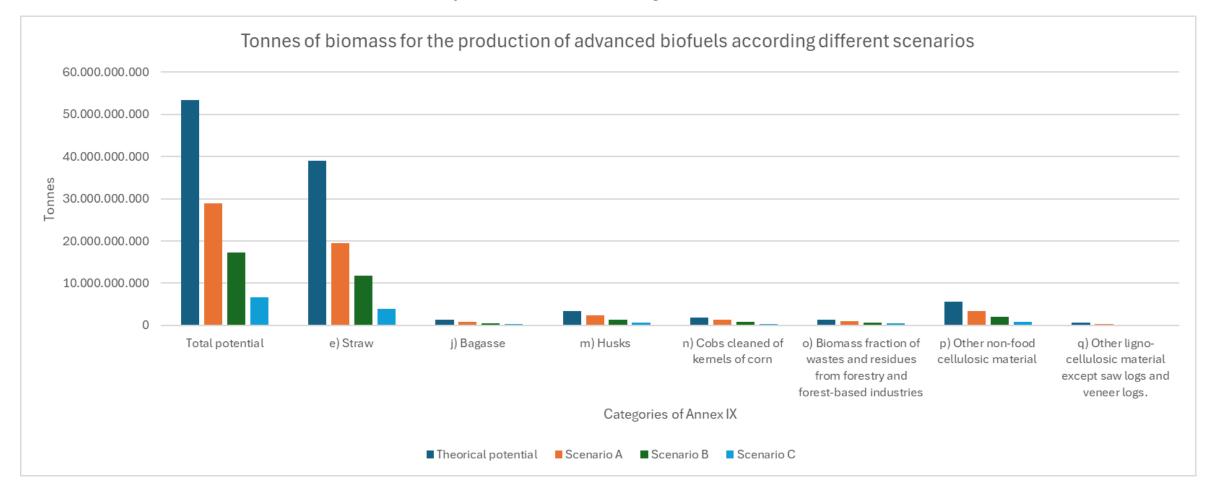
Design the value chain, stakeholders involved, identification of main variables that affect to the value chain



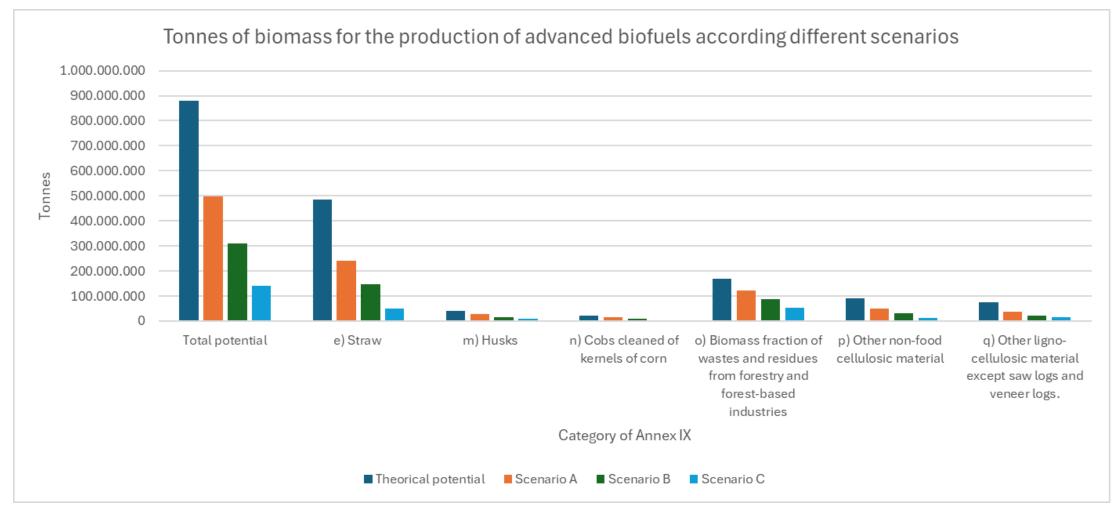


Development of a tool that integrate the previous information and process the data through AI techniques

- Developing the methodology to assess biomass potential
- Selection of feedstock suitable for pyrolysis ang gasification at European and Global, according Annex IX of RED II and RED III

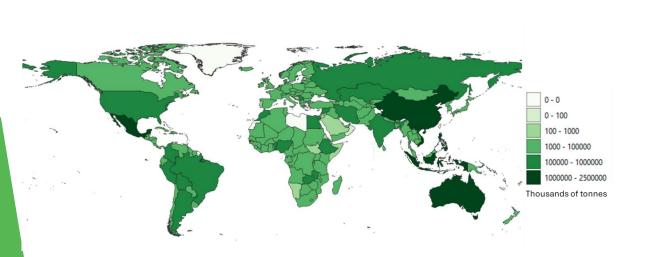


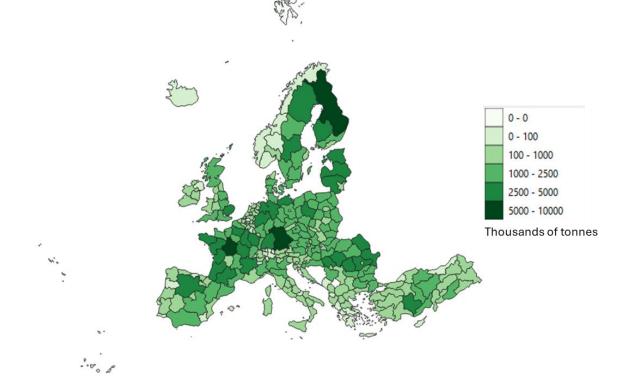
To represent the biomass potential in Europe (NUST 2 level) and Global (NUTS 0 level) for the production of aviation and maritime biofuels via pyrolysis and gasification


Categories Annex IX	Biomass considered at European level	Biomass considered at Global level	
e) Straw	Maize Stalk	Maize Stalk	
	Barley Straw	Barley Straw	
	Wheat straw	Wheat straw	
	Soya straw	Rice straw	
	Rye straw	Sugar cane straw	
	Oats straw	Soya beans straw	
	Triticale straw	Yams straw	
	Rape seed straw	-	
j) Bagasse	-	Sugar cane bagasse	
m) Husks	Wheat husk	Wheat husk	
		Rice husk	
n) Cobs cleaned of kernels of corn	Maize cob	Maize cob	
o) Biomass fraction of wastes and residues from forestry and forest-based industries	Primary residual forestry biomass	Primary residual forestry biomass	
	Secondary forestry biomass	Secondary forestry biomass	
p) Other non-food cellulosic material	Fruits pruning	Apples pruning	
	Grape pruning	Grape pruning	
	Olive pruning	Grape pomace	
	Potatoes leaves	Orange pruning	
	Sugar beet leaves	Potatoes leaves	
	Sunflower seed leaves	Potatoes peel	
	Grape pomace	Sugar beet leaves	
	Olive pomace	Sweet potatoes leaves	
	Rape seed pomace	Sweet potatoes peel	
	Potatoes peel	Yams peel	
q) Other ligno-cellulosic material except saw logs and veneer logs.	Forestry wood fuel Forestry wood fuel		

Global biomass potential according different scenarios

European biomass potential according different scenarios

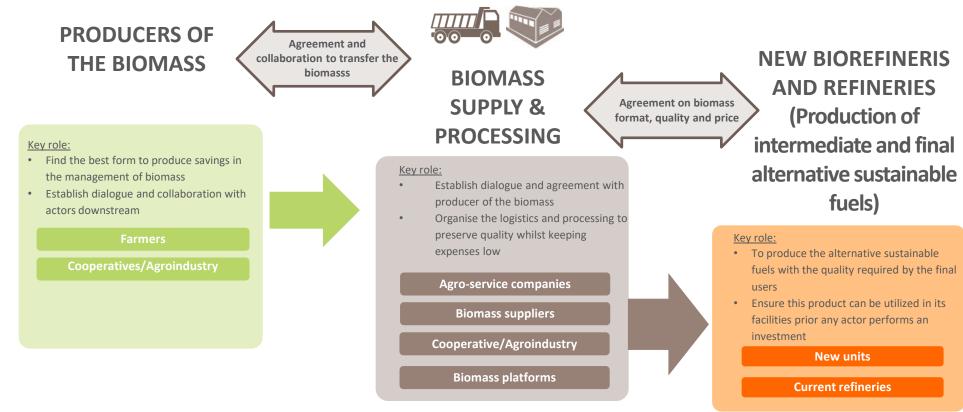



Contribution of biomass categories to meet energy demand for decarbonizing aviation and maritime sectors

- The report of the International Transport Forum 2023 indicates an estimated data of kerosene for the aviation sector and fossil fuels for the maritime sector per year:
 - Aviation sector: 320 MToe at Global level and 50 Mtoe at European level
 - Maritime sector: 310 Mtoe at Global level and 65 Mtoe at European level
- Different efficiency (15 and 30 %) for conversion from biomass to advanced fuels has been considered

Categories of Annex IX	Europe, scenario B		World, scenario B	
	Efficiency of 15 %	Efficiency of 30 %	Efficiency of 15 %	Efficiency of 30 %
e) Straw	7%	15%	120%	240%
j) Bagasse			5%	10%
m) Husks	1%	2%	14%	28%
n) Cobs cleaned of kernels of corn	0%	1%	8%	15%
o) Biomass fraction of wastes and residues from forestry and forest-based industries	4%	9%	7%	14%
p) Other non-food cellulosic material	2%	3%	20%	41%
q) Other ligno-cellulosic material except saw logs and veneer logs.	1%	2%	2%	4%
Total	16%	31%	159%	317%

Geographical distribution of global biomass potential of sustainable biogenic feedstock for the production of advanced biofuels according to the Scenario B Geographical distribution of European biomass potential of sustainable biogenic feedstock for the production of advanced biofuels according to the Scenario B



Design of the value chain

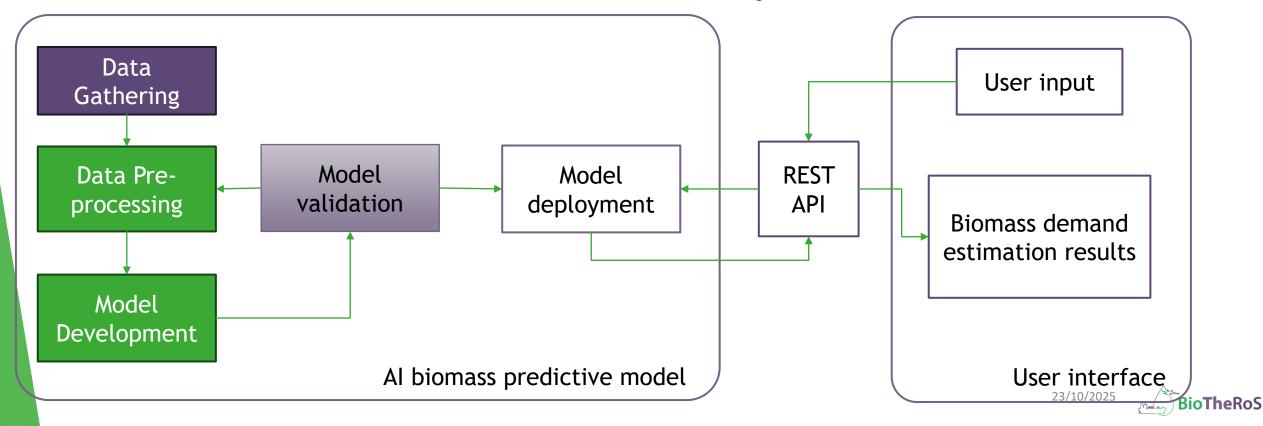
To design the value chain:

- From the field/source of the biomass to the transformation plant
- Identification of the type of stakeholders involved
- Identification of harvesting and transportation cost to the transformation plant

Boundary conditions for new pyrolysis and gasification plants

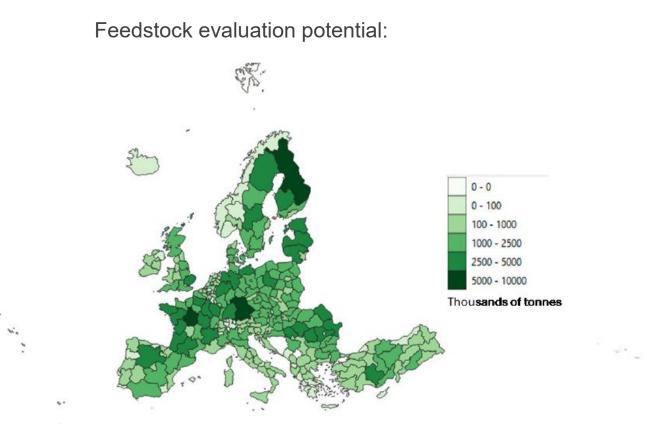
Users will have the ability to specify several critical factors for siting new pyrolysis and gasification, including:

- * Feedstock capacity: The desired volume of feedstock the plant should be capable of handling, ensuring the design matches the availability of resources in the chosen area.
- Average cost: The target cost for the feedstock, factoring in variables such as collection, transport, and pretreatment, to maintain economic viability.
- Feedstock flexibility: Whether the plant should accommodate a single feedstock type or a mixture of different feedstocks, depending on the local resource profile.
- Plant configuration: The choice between a decentralized system with smaller intermediate plants feeding into a centralized upgrading facility or a fully centralized system combining both steps in a single location.
- Infrastructure requirements: The level of infrastructure needed at potential locations, such as transport networks, access to utilities, proximity with current refineries and existing industrial setups.
- Energy needs: The plant's energy consumption and potential contribution of biomass categories to meet energy demand for decarbonizing aviation and maritime sectors



Development of a tool for predictive biomass and new siting industries

The user will have the ability to change those variables with the greatest impact


- Biomass availability
- Harvesting and collection cost
- Transportation cost

- Boundary conditions for new pyrolysis and gasification plants
- Optimisation+Al techniques will be developed
- Identification of the location of new plants, and representation through a data visualisation interface

Development of predictive biomass demand models

Main outputs of the tool:

Identification of new plants:

Thank you!

Contact

Role: Technical project manager in CIRCE (WP2 leader in Biotheros)

Name Surname: Sebastián Zapata

Company acronym: CIRCE Email: szapata@fcirce.es

