

Collaborative actions to bring novel **BIO**fuels **THE**rmochemical
ROutes into industrial **Sc**ale

WORKSHOP: “BIOFUELS FOR TRANSPORT: BIOTHEROS PROJECT INSIGHTS INTO TECHNOLOGY, MARKETS, AND SUSTAINABILITY”

*From pilot to industrial scale: the BioTheRoS project driving
Europe’s thermochemical biofuel revolution*

Dr. Dimitris Kourkoumpas (CERTH)

8th Central European Biomass Conference | 21st January, 2026

The BioTheRoS Project has received funding from the European Union’s Horizon Europe research
and innovation programme under Grant Agreement No. 101122212.

BioTheRoS Overview

Project Details

BioTheRoS is an EU Horizon Programme under Grant Agreement No 101122212 running from 2023

Consortium Members

Demonstration Cases

Application in pyrolysis and upgrading units in Netherlands & gasification unit in Austria

BioTheRoS Objectives

BioTheRoS develops **innovative** & cost-competitive **Fast Pyrolysis-to-biofuels** and **Gasification-FT-Synthesis value chains**, combining **Carbon Capture Utilization (CCU)** and **fuel upgrading** for accelerating the scale-up of sustainable biofuels.

BioTheRoS Goal: Transfer biomass into an opportunity

1. Development of **cost-effective & sustainable technologies** for thermochemical conversion of biomass to produce biofuels to TRL5

2. Selection and assessment of **several biomass feedstocks** suitable for scaled-up sustainable pyrolysis & gasification biofuel value chains employing **predictive biomass demand AI models**

3. Development of **scale-up rules** of biofuels production based on advanced modelling techniques and lab/pilot-scale trials.

4. Development of an **LCSA framework**, integrating technical, environmental, economic & social parameters via **multi-criteria decision analysis** techniques

5. Identification of **concrete measures** to improve the sustainability of thermochemical conversion of biomass to biofuels via pyrolysis and gasification

6. Provide clarity into the **market dynamics** of scaled-up pyrolysis and gasification biofuel value chains

Demo sites & related technologies

The Netherlands – Pyrolysis and Upgrading units

Pyrolysis Units:

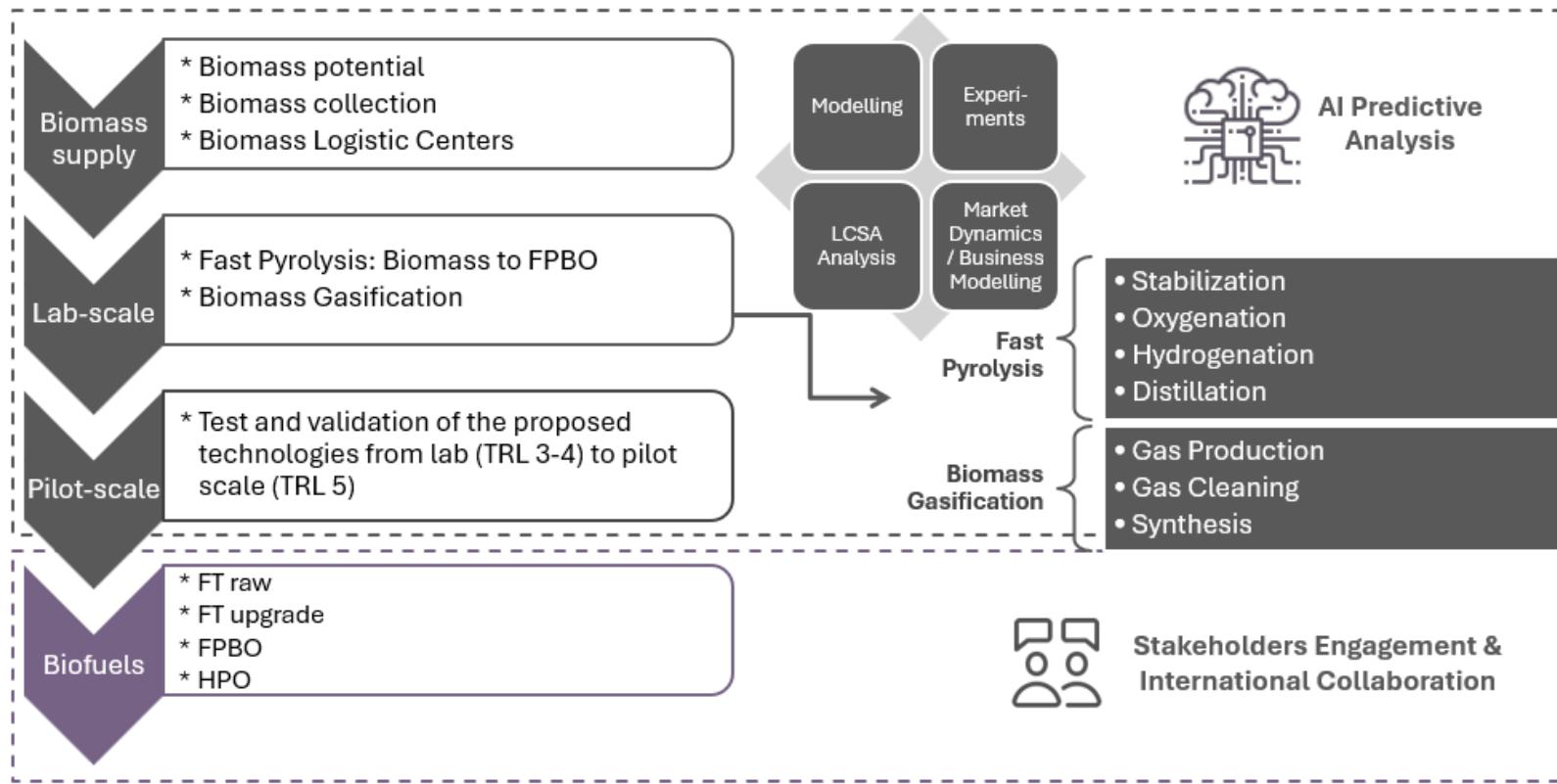
- Bench-scale unit: 2–5 kg/h
- Pilot plant: 80–200 kg/h

Upgrading Unit (for pyrolysis oil to fuels):

- Continuous operation
- Capacity: 0.8–1.5 kg/day

Austria – Gasification Unit

Gasification Units:


- 1 MW DFB reactor: ~200 kg/h feed rate
- 250 kW Fischer-Tropsch pilot unit: produces 15-20 L of FT raw product

Upgrading Unit (for FT waxes to fuels):

- Hydrocracking pilot plant located in Greece

BioTheRoS Methodology

Core Focus: Pyrolysis & gasification-based advanced biofuel value chains

Multidisciplinary, stepwise methodology

- Feedstock selection
- Pilot-scale validation
- Scale-up simulation & modelling
- Environmental, techno-economic & social assessments

BioTheRoS Reached Outcomes

1. Biomass-to-Biofuel Optimization Process

- Quantified and categorized agricultural and forestry biomass to optimize value chains and prioritize biofuel feedstocks.
- Successfully developed an initial AI-driven optimization model for processing plant siting.

2. Validation of TEC value Chains

- **Pyrolysis Value Chain:** Achieved targeted FPBO production: 22.3 L from forestry residues and 23.5 L from barley straw.
About 5 litter of barley straw derived HPO is available.
- **Gasification Value Chain:** Syngas from both forestry residues and softwood met Fischer-Tropsch specifications, with effective nitrogen removal from forestry residues.

3. Holistic Sustainability Framework

- Established a novel MCDA approach that merges efficiency assessment with multi-criteria ranking to identify optimal production routes for advanced biofuels.
- Developed an integrated Life Cycle Sustainability Assessment (LCSA) framework combining LCA, LCC, and sLCA to enable comprehensive evaluation of biofuel scale-up pathways.

4. Market Insights

- Advanced biofuel demand quantified, providing a robust analytical basis for future production targets.
- Completed assessment of RED III Annex IX-A feedstocks currently utilized in advanced biofuel production, supporting informed policy and investment decisions.

5. Building knowledge for upscaling

- Developed BioTheRoS Knowledge Hub and Tech State Navigator, connecting 50+ research groups & stakeholders

Potential Synergies

Government & Regulatory Bodies

BioTheRoS shares lessons learned and regulatory insights at EU and regional levels

Fuel Producers and Suppliers

BioTheRoS highlights the environmental and economic benefits of biofuel production & use

Biomass Providers

BioTheRoS provides economic benefits for engaging in the biofuel supply chain

Research Stakeholders

BioTheRoS shares technical results, innovations, progress, and project challenges

Airlines & Shipping Companies

BioTheRoS raises awareness of the potential for biofuel use

General Public / Citizens

BioTheRoS shares insights on EU competitiveness, external dependency, environmental and societal impacts.

Take-Home Messages

Feedstock Supply & Cost Competitiveness:

Ensuring a **sustainable, cost-effective feedstock supply** is essential for the growth of future biorefineries. Investment incentives are needed to offset biomass's price disadvantage relative to fossil fuels.

Supply Chain Risk Management:

Effective biomass supply chain management is critical to securing long-term sustainability and consistent fuel availability.

Circular Economy Integration:

Holistic, circular economy-driven guidelines are required across the entire advanced biofuel supply chain to stimulate aviation and maritime fuel markets.

Technology Pathways & Scale-Up:

Constraints and opportunities for scaling up pyrolysis and gasification pathways must be clearly identified.

Sustainability & LCA Focus:

Growing attention to GHG impacts in aviation and maritime sectors underscores the need for **LCSA** and integration of **economic, environmental, and social dimensions** for a balanced sustainability approach.

Thank you!

Dr. Dimitrios Kourkoumpas

Senior Collaborating Researcher (CERTH)

kourkoumpas@certh.gr

Special Issue
Life Cycle Thinking in the Era of Digitalization and Artificial Intelligence: Implications for Green Energy and Sustainability

Guest Editor
Dr. Dimitrios Sotirios Kourkoumpas

Deadline
30 June 2026

 IMPACT FACTOR 4.7

 CITESCORE 8.3

The BioTheRoS Project has received funding from the European Union's Horizon Europe research and innovation programme under Grant Agreement No. 101122212.